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“Key questions in cancer research involve observing multiscale
phenomena and collecting multimodal data from diverse sources;
therefore, single datasets and most existing methods are
insufficient.”

Sharpless NE, Kerlavage AR. “The potential of Al in cancer care and research’,
Biochim Biophys Acta Rev Cancer. 2021



Data Types in Bioinformatics

* Clinical: - Pathology Images:
* age, sex, race, histories, pathologies, « H&E, Immunohistochemistry (IHC), Multiplex
therapeutics immunofluorescence (MxIF)
* Omics: - Small Molecules:
* genomics, transcriptomics, proteomics, * Mode of actions, chemical descriptors, etc.

metabolomics, etc.

Free Text:
 Radiology Images:

- CT, CBCT, MRI, PET

- Pathology reports, abstracts, etc.

Other types:

« Cryo-EM, high content images, efc.
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Examples of Applications of Multimodal Biomedical Data

* Predict cancer prognosis and diagnosis!']
« Multifaced diseases (cancer, cardiac disease, diabetes, etc.)
* Reduce noise from a single source

 Integrate data at different scales and organism levels

* Generate new mechanistic insights
» Visualize and cluster cancer subtypes [2]

* Understand response to treatments [3]
* Predict Drug Sensitivity

- Enable precision medicine

[1] Cheerla, Anika, and Olivier Gevaert. "Deep learning with multimodal representation for pancancer prognosis prediction." Bioinformatics 35.14 (2019): i446-i454.

[2] Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell.
2014;158(4):929-944.

[3] De Cecco, Loris, et al. "Integrative miRNA-gene expression analysis enables refinement of associated biology and prediction of response to cetuximab in head and
neck squamous cell cancer." Genes 8.1 (2017): 35.



Why Multimodal Biomedical Data in Machine Learning?

1. Feature importance in classification: What subset of key modalities and features is
responsible for the separation of classes? Example: multiple panels in histochemistry

2. Better predictive power: increase classification of regression power using multimodal
data. Example: Survival analysis from whole slide and gene expression

3. Same as 2 but for unsupervised learning (e.g., clustering). Example: Tumor subtyping

Study interaction between different modalities to understand complex biological
systems from different angles:

Genotype-phenotype interactions
Drug response

5. Missing modalities: Perform the task with one modality when other modality is missing



Challenges of Using Multimodal Data

* Curse of dimensionality: N, res (ail modaiities) > Nsampies - 1000s of features in
100s of samples.

Heterogeneous data: scale of features, type of features, fusion, etc.

Missing data: Remove, impute, bias

Rarity and class imbalance

Edable Acccssiblo |ntcropcrablc Reusable
Big data salacity: FAIR Data, scalable compute, etc. £} 9
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Big Data Scalability

* FAIR Data
- Data annotation
- Data retrieval

- Scalable Compute:
* Personal
 Virtual machines

* Division cluster

* NIH High Performance Compute cluster: Biowulf

* Cloud compute

* Department of Energy Leadership compute
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Challenges: Curse of Dimensionalities

« Every modality is represented by a features vector (e.g, pixels for images)

Nreatures (all modalities) >> Nsampres - 1000s of features versus in 100s of samples.

- Makes machine learning prune to over fitting: good performance on training data,
worse performance on test data

* Multimodal data makes this problem even harder

« Can be solved using:
« Dimensionality reduction techniques (more later)
* Features selection techniques:
* Filter out features that do not provide much Information Gain (IG)
* lteratively train surrogate models with a subset of features

« Use models that implicitly apply feature selection (LASSO regression in linear
models)



Challenges: Missing Data

Remove samples with missing data. Potential for large data loss

Impute missing data: mean, median, regression from un-missing data, K-nearest neighbor, etc.

Imputation from existing modalities: e.g., add the text based on images

* For complementary modalities, project the two modalities into a new coordinated space, such that if one
modality is missing, the other modality can be used in a given for prediction.

— Coordinated feature space

~ I

« Other methods include maximum likelihood estimators, Gaussian Mixture Models, denoising
autoencoders for clinical and RNASeq imputation.

- Multiple imputation: Impute using different methods, resulting multiple new imputed samples

* The imputation methods are prune to add bias



Challenges: Heterogeneous Data

 Number and types of features in every modality:
« Continuous, discrete, categorical, interval variables

» Different scales, distribution, statistical properties

* Potential preprocessing:
« Normalize every modality (e.g. zero mean, unit variance)
« Scale the values in every modality by the inverse of the number of features
« Compare every modality independently using Multiple Kernel Methods
+ Different data source has different notion of similarities

- Dimensionality reduction for every modality separately (e.g., autoencoder) [1], [2]

[1] Zhang, Tianyu, et al. "Synergistic drug combination prediction by integrating multiomics data in deep learning
models." Translational Bioinformatics for Therapeutic Development. Humana, New York, NY, 2021. 223-238.

[2] Cheerla, Anika, and Olivier Gevaert. "Deep learning with multimodal representation for pancancer prognosis
prediction." Bioinformatics 35.14 (2019): i446-i454.



Challenges: Rarity and Class Imbalance

- Baseline classifier can completely ignore rare class and achieve very high accuracy by
always predicting abundant class (e.g., over 99% for 10000, 100 imbalance in samples)

« This is a very common problem in biological data: enhancer in genomes, DNA
methylation status, modification of amino acid residues, etc.

* Potential solutions:

- Data sampling: before classification, up-sample (e.g., using SMOTE), down-sample, or mix
of both

« Algorithm modification: apply a higher loss weight to the minority class (e.g.,
SVM_Weight)

 Ensemble learning: Train multiple classifier using the the minority class and a random
subsample of the majority class, then combine predictions of individual classifiers



Challenges: Rarity and Class Imbalance

» Use appropriate metrics to evaluate the algorithm

* For binary class (Majority is negative, Minority is positive):
« Specificity (accuracy of the majority class) = True Negative / Total Negative
« Sensitivity (accuracy of the minority class) = True Positive / Total Positive
 F,score =(2TP)/(2TP + FP + FN)

» Other metrics: balanced error rates, area under the precision-recall curve,
etc.

* For multiclass;

* Micro and Macro F1 scores, balanced error rates, confusion matrix, etc.



How to Incorporate/Fuse Multi-View Data in the Learning Process?

- Early:
« Concatenate the features as a single vector.

* Features can be normalized (zero mean, unit variance)

Concatenate Train Model
Features

Samples .
=

Features

Samples

Image adapted from: Nobel W, Support vector machine applications in computational biology, 2004



Features Concatenation

« Features come in different forms:
« Continuous, discrete, characters, graphical, etc.
« A conversion would be needed:
« Continuous to discrete (or vice versa)
» Categorical to one hot coding (e.g., for three classes: “1007, “010” ,"0017)
- Features come in different scales:
« Normalize and Standardize
« Concatenation might not be feasible:

- Example (bag of words representing a document + image pixels) The semantics of the
bag of words will be lost

« Concatenated features can be used in linear classification with regularization to
select the most important features in achieving a task.



Trees of Mixed Data Types

» Decision trees can combine continuous and discrete data simultaneously

 There is no need for normalization because values of continuous variable can be
split into ranges as part of the rules

« Decision trees are prone to noise and overfitting
« Solution can be in and ensemble of multiple trees (e.g., random forests)

« Early and late incorporation of mixed data types can be used to build the trees



How to Incorporate Multi-view Data in the Learning Process?

 Intermediate:

* First compute on every modality separately, then combine the partial computation as input to
the prediction model

Features Compute Concatenate Training Model

=

=

Image adapted from: Nobel W, Support vector machine applications in computational biology, 2004



Feature Extraction to View Specific Components

« Apply a feature extraction/reduction method
for every modality separately, then
concatenate these features.

 How to extract features:

- Matrix factorization: e.g., Principal Component
Analysis, Multi Omics Factor Analysis, etc.

« Non-linear dimensionality reduction methods:

+ t-Distributed Stochastic Neighbor Embedding
(t-SNE)

» Autoencoders (neural networks)

* New features are numeric, easy to
concatenate, and have smaller dimensions

* Interactions between features still cannot be
accounted for.

New Feature Set 1

Feature Extractor

| Data View 1 l

Final Decision

Apply a Classifier

Combine New Feature
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How to Incorporate Multi-view Data in the Learning Process?

« Late:

« Learn separate models from every modality, then combine the outputs to make a final
prediction

Features Training Model Ensemble
Prediction
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Image adapted from: Nobel W, Support vector machine applications in computational
biology, 2004




Multi-Omic Clustering for 10 Cancer Types
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Pathomic Fusion: H&E Whole Slide + Genomic Profile

Kronecker product

Tensor Fusion hi X hn, instead of
hi X h_q ++ .
- - 'S & concatenation
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Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis”, IEEE Transactions on
Medical Imaging 2021



Pan Cancer Prognosis Prediction using Multimodal Representation

Gene Expression Data miRNA Data Clinical Data Whole Slide Images
S —— ’ TABGE Clin+miRNA+mRNA+WSI Clin+miRNA Clin+tmRNA
gway ate “ pixels Cancer site Baseline | Multimodal Delta Baseline | Multimodal Delta Baseline Multimodal
e B sigmoid dropout (%) dropout (%) dropout
Coroponc03 |
’ BLCA 0.65 0.73 12.6 0.66 0.69 4.4 0.60 0.58
BRCA 0.77 0.79 3.0 0.80 0.80 -0.1 0.57 0.56
512 Similarity CESC 0.73 0.76 4.6 0.77 0.76 =1.2 0.67 0.62

512 Loss
—[DZ]:D\ COADREAD 0.72 0.74 3.8 0.78 0.75 -4.8 0.72 0.58

S12 j \\D]ID] HNSC 0.61 0.67 10.4 0.64 0.64 0.7 0.58 0.55

512
Death predicted after X days KICH 0.95 0.93 -2.0 0.82 0.85 3.0 0.80 0.84

True prognosis OR
Cox Loss Censored observation

Deep learning with multimodal representation for pancancer
prognosis prediction &

Anika Cheerla, Olivier Gevaert ™

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i446-i454,
https://doi.org/10.1093/bioinformatics/btz342
Published: 05 July 2019



Drug Response Prediction Using Neural Networks

Gene Expression / SNPs
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Drug2 concentration Deep learning for drug response prediction in cancer

Delora Baptista ™, Pedro G Ferreira, Miguel Rocha

Briefings in Bioinformatics, Volume 22, Issue 1, January 2021, Pages 360-379,
https://doi.org/10.1093/bib/bbz171
Published: 17 January 2020 Article history v



Example: Predicting Tumor Cell Line Response to

Drug Pairs with Deep Learning

Patient tumors Cancer cell lines Patient-derived xenografts

o
828 B9
Molecular
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One-size-fits-all Personalized monotherapy Personalized combination therapy

Most patients with cancer are still
treated in a manner

A growing number of examples of
In
practice

Monotherapies may not be effective
due to tumor heterogeneity and
acquired drug resistance

A growing body of work predicting
drug synergy and effective drug
combinations

Figure source: George Adam et al. Machine learning approaches to drug response

prediction: challenges and recent progress, NPJ Precis Oncol, 2020



Combo: Combination Drug Response Predictor

* Developed by computer scientists in the Argonne National Laboratory

 Predict tumor cell line growth to drug pairs using deep learning models (artificial
neural networks)

* The workflow consists of 5 main steps:

Step 1
Step 2
Step 3

Collect and preprocess data

Design and build the model

Fit the model to the training data

Step 4

Use the model to make predictions

Step 5 - Evaluate the accuracy of the predictions

Fangfang Xia, et al. Predicting tumor cell line response to drug
pairs with deep learning, BMC Bioinformatics, 2018



Combo: Data

 Data sources

Predicted Percentage Growth

* Cell line molecular features i
. Layer FC4
« Gene expression f
: Layer FC3
- Protein abundance = Residual
« microRNA expression Layer FC2 connections
?
* Drug descriptors Laye? FC1
° Dragon Concatenation layer: all encoded features
: Expression | Proteome | microRNA Drug 1 Drug 2
» Drug pair screen data = 7 i \ /«
- A subset of NCI-ALMANAC ([ 7 i 4 N
Layer E3 Layer P3 Layer M3 Layer D3 Shared
« 54 FDA-approved 'V'fzzfﬁ('ear f i T f % o
anticancer drugs models | =i bl =eite desoripto
mode
Layer E1 Layer P1 Layer M1 Layer D1
A = S R Tid = 4 = )
Figure source: Fangfang Xia, et al. Predicting tumor cell line Cell line molecular features Drug 1 descriptors | | Drug 2 descriptors

response to drug pairs with deep learning, BMC Bioinformatics, 2018



Combo: Data and Data Preprocessing

NCI-ALMANAC

« Systematically examine the combination efficacy of 104 FDA-approved
anticancer drugs

« Catalog in vitro screen results of their pairwise combinations against the
NCI-60 cell lines

« Growth inhibition percentage converted to fraction

« ComboScore: differences in observed versus expected growth fractions
Data preprocessing

* log(x+1) transformation

« Imputation and scaling

Susan L. Holbeck, et al. The National Cancer Institute ALMANAC, Cancer Res, 2017



Combo: Design and Implementation

* Neural network Architecture

Predicted Percentage Growth

[ I ?
Feature encoding models (3 layers) Layer FC4
3 1
o Layer FC3 .
. 5 Re&dgal
* 1 drug descriptor model Layer FC2 connections
?
« Growth prediction model (4 layers) Laye; FC1
Concatenation layer: all encoded features
i Expression | Proteome | microRNA Drug 1 Drug 2
* Implemented with Keras 7 / i N /
I
fi Layer E3 Layer P3 Layer M3 N (T Layer D3 i Shared
Molecular 3 ; 3 5 F dnig
feature Layer E2 Layer P2 Layer M2 Layer D2 | | yescriptor
models s s s R, s
Layer E1 Layer P1 Layer M1 Layer D1
A = ' A B d /G =
Figure source: Fangfang Xia, et al. Predicting tumor cell line Cell line molecular features Drug 1 descriptors | | Drug 2 descriptors

response to drug pairs with deep learning, BMC Bioinformatics, 2018



Combo: Train, Test, and Performance Evaluation

- Performance of the drug pair
response model measured with 5-
fold cross validation

* Metrics:

* Mean Squared Error (MSE)
* Mean Absolute Error (MAE)
 Coefficient of determination (R?)

* Models tested on different
combinations of feature categories to
assess their relative importance

to drug pairs with deep learning, BMC Bioinformatics, 2018

Molecular Drug features MSE MAE R?

features

Baseline Baseline 05253 05709 -1.001

One-hot One-hot encoding 02448 03997 0.1269

encoding

Gene expression ~ One-hot encoding 02447 03999 0.1272

Gene expression  500-dimensional 02450 04008 0.1271
noise

One-hot Dragon7 descriptors 00292 0.1086  0.8892

encoding

Proteome Dragon7 descriptors 00303 0.1117  0.8844

microRNA Dragon7 descriptors 00275 0.1050 0.8952

Gene expression  Dragon7 descriptors 00180 0.0906 0.9364

Gene expression,  Dragon7 descriptors  0.0158 0.0833 0.9440

microRNA,
proteome

The boldface row represents the best cross validation
Table source: Fangfang Xia, et al. Predicting tumor cell line response
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Figure source: Fangfang Xia, et al. Predicting tumor cell line

response to drug pairs with deep learning, BMC Bioinformatics, 2021
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Performance Evaluat

* 75% of the cell lines have the predicted top 100 list at least 75% correct

Cell line views of growth ranking error

Combo

response to drug pairs with deep learning, BMC Bioinformatics, 2021

Figure source: Fangfang Xia, et al. Predicting tumor cell line



Combo: Application

Drug pairs with top combination scores across cell lines o

Rank Drug pair Predicted drug pair

1 (idarubicin, amifostine) (idarubicin, amifostine) o
2 (epirubicin, amifostine) (epirubicin, amifostine)

3 (idarubicin, epirubicin) (idarubicin, epirubicin)

4 (idarubicin, covidarabine) (idarubicin, covidarabine) .
5 (epirubicin, idarubicin) (epirubicin, idarubicin)

6 (idarubicin, imigquimod) (idarubicin, imiquimod)

7 (epirubicin, imiguimod) (epirubicin, imiquimod)

8 (epirubicin, dexrazoxane) (epirubicin, covidarabine)

9 (epirubicin, covidarabine) (epirubicin, cyclophosphamide)

10 (idarubicin, allopurinol) (idarubicin, allopurinol)

An important use of drug response models
is in high throughput virtual screening

A list of top 10 drug pairs across cell lines
ranked using the ComboScore calculated
from PREDICTED growth data

80% identical, with the predicted version
missing (epirubicin, dexrazoxane) and
overpredicting (epirubicin,
cyclophosphamide)

Table source: Fangfang Xia, et al. Predicting tumor cell line response

to drug pairs with deep learning, BMC Bioinformatics, 2018



Summary

« Opportunities in predicting diagnosis, prognosis, clustering, and drug
response that would take advantage of complementary and redundant data.

« Challenges still exist, and no single method can overcome them.

+ Benefit from the integration of the multimodal data to answer key questions in
biomedical research.

* A need for standard benchmarks to compare models, and systematic ways to
collect machine learning ready data.
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